Low Level Laser Therapy for the Treatment of Temporomandibular Disorders: A Systematic Review of the Literature

ABSTRACT: The authors performed a review of the literature to evaluate the efficacy of low level laser therapy (LLLT) for the treatment of temporomandibular disorders (TMD). Selection criteria included: 1) human subjects, 2) articles written in English, and 3) randomized placebo-controlled trials. Evaluation was performed according to the CONSORT 2010 criteria. A total of 14 articles were included in the review. Studies varied considerably in terms of methodological design, particularly regarding the site of application of the laser beam, the number of applications performed, their duration, the laser beam features (wavelength, frequency, output, dosage), and outcome measures. The outcome of the trials was controversial and not particularly related to any features of the laser beam, to the number of laser applications, and their duration. Based on the results of this review no definitive conclusions can be drawn on the efficacy of LLLT for the treatment of TMD. Many methodological differences among the studies, especially regarding the number and duration of laser applications and characteristics of the laser beam (wavelength, frequency, output), do not allow for standardized guidelines for effective treatment with LLLT. The only indication seems to be that LLLT is probably more effective for the treatment of TMJ disorders, and less effective for the treatment of masticatory muscle disorders.

Dr. Marcello Melis received his pharmacy degree from the University of Cagliari (Italy) in 1990 and his D.M.D. degree from the Dental School of the same university in 1998. He was a resident at the Gelb Orofacial Pain Center at Tufts University, Boston from 1998 to 2000 when he completed the Fellowship Certification Program in Temporomandibular Disorders and Orofacial Pain. Currently, Dr. Melis practices in Cagliari in the field of temporomandibular disorders and orofacial pain and is an adjunct clinical instructor in the Cranio-mandibular Pain Center at Tufts University. He has been involved in several international research activities focusing on temporomandibular disorders and orofacial pain, occlusion, and muscle function.

Temporomandibular disorders (TMD) is a collective term that embraces a number of clinical problems involving the masticatory muscles, the temporomandibular joint (TMJ), and the associated structures. Such disorders are a major cause of non-dental pain in the orofacial region, with 40% to 75% of nonpatient adult populations displaying at least one sign, and approximately 33% reporting at least one symptom of TMJ dysfunction.

Management of TMD is based mainly on conservative and reversible treatment modalities such as self-management, behavioral modification, physical therapy, medications, and orthopedic appliances. More aggressive and irreversible therapies such as complex occlusal therapy or surgery should be avoided and limited to few selected cases.

Among physical therapy procedures, low level laser therapy (LLLT) has recently been proposed to reduce symptoms and improve function in TMD patients. Lasers can be divided into “hard lasers” and “soft lasers” according to their energy output. The former have higher energy output and are used to cut tissues, especially during surgical procedures. The latter, also
called LLLT, have lower energy output and do not increase skin temperature; their main effect is based on light absorption rather than thermal effect. They typically use light with a wavelength ranging between 630 nm and 1300 nm.

Despite the fact that the precise mechanism of LLLT is not clear, it seems to have a biostimulating, anti-inflammatory, and analgesic effect through direct irradiation, without causing a thermal response. Biostimulation occurs through metabolic activation, stimulation of the cellular respiratory chain in the mitochondria, and increasing microcirculation, reduction of edema through an increase of ATP production, improvement of local blood synthesis of bradykinin. LLLT also produces an increase of beta-endorphins. It also increases the pressure threshold through a complex electrolytic nerve fiber blocking mechanism, and causes a decrease of the release of histamine and acetylcholine, and a reduction of the synthesis of bradykinin. LLLT also produces an increase of ATP production, improvement of local blood microcirculation, reduction of edema through an increase of lymphatic flow, and reduction of prostaglandin E2 and cyclooxygenase-2 levels.

Different studies report contrasting results in terms of pain reduction and improvement of mandibular function after LLLT in TMD patients. Thus, the aim of this study was to conduct a systematic review of randomized controlled trials to evaluate the efficacy of LLLT as a treatment modality for TMD.

Materials and Methods

Literature Search

A literature search of the published articles was performed using Pubmed and combining the terms: temporomandibular disorders, temporomandibular joint disorders, temporomandibular joint dysfunction, temporomandibular joint disc, TMD, TMJ, craniomandibular disorders, myofascial pain, myofascial pain syndrome, face pain, facial pain, on one side; and the terms: laser, laser therapy, low level laser therapy, low intensity laser therapy, soft laser, LLLT, LILT, on the other side. The selection was limited to articles written in English and experiments conducted on humans.

Titles and abstracts were evaluated in order to select the articles relevant to the topic, and the full text of these was obtained. The references of the articles were hand-searched in order to look for other relevant articles. Based on the trial design of the studies, only randomized controlled trials (RCTs) and only studies where laser therapy was compared to a placebo treatment were selected. A flow chart of the literature review is shown in Table 1.

After deciding the key words, two different authors ran the search independently. In case of disagreement, inclusion of the selected articles was discussed and a decision was made by consensus.

Quality Assessment of the Studies

Evaluation of the selected RCTs was carried out using the 2010 CONSORT criteria as modified by Fricton, et al. The CONSORT criteria consist of a checklist and a flow chart with a list of requirements to help authors perform high-quality RCTs. For this reason, fulfillment of such requirements can also be used for the assessment of those studies. As proposed by Fricton, et al., the authors eliminated from the criteria those that do not affect the results of the studies and grouped some of them together to simplify the assessment of the studies (Table 2). All criteria divided into criterion a and criterion b were grouped together and evaluated as one (for example 1a and 1b). Then, criteria 8a, 8b, 9 and 10, and criteria 12a, 12b, 17a, 17b and 18 were also grouped together and evaluated as one. The criteria listed by Fricton, et al. are slightly different from the ones of the present study because recently the latest version of the CONSORT criteria became available. For each point, a score of 0 was given if the criterion was not fulfilled, and a score of 1 was given if the criterion was fulfilled. This leads to a total score ranging from 0 to 12. As in Fricton, at al., the level 1 criteria for minimizing systematic bias were first determined by evaluating CONSORT points 8, 9, 10, 11, 15, and 16. Then, all CONSORT criteria were considered. Evaluation of the studies was carried out by two independent authors, except for the assessment of the results of the statistical analysis, which was performed by an expert in statistics. In case of disagreement between the evaluators, differences were discussed and a decision was made by consensus.

Results

A total of 35 articles were first identified through the Pubmed search, and two more studies were found by hand-searching the references of the original articles. Only 17 were RCTs, and only 14 of them included a placebo-controlled group in their study design (Table 1).

The studies selected for the review differed considerably in terms of methodological design, particularly regarding the site of application of the laser beam, the number of applications performed, their duration, the
laser beam features (wavelength, frequency, output, dosage), and outcome measures. All data are summarized in Table 3.

Of the 14 studies selected for the review, laser therapy was applied to the TMJ in eight studies, to the masticatory muscles in three studies, and to both the TMJ and the masticatory muscles in three studies. The number of laser applications varied between three (one application per week, for three weeks) and 20 (2-3 applications per week, for eight weeks), and their duration varied between 10 seconds and 10 minutes for each application. The characteristics of the laser beam are defined by the laser output, the frequency and wavelength of the laser beam, and these parameters, together with the area of the beam spot, result in the dosage density administered to the skin. These variables were very different in the studies examined. Output varied between 17 mW and 27 W, frequency varied between 0 Hz and 1,500 Hz, wavelength varied between 632.8 nm and 910 nm, and density dosage varied between 1 J/cm² and 105 J/cm². Also, outcome measures varied among the studies. They addressed pain intensity and mandibular function. Pain intensity was assessed using visual analog scales to indicate either spontaneous pain or pain on palpation, number of tender points, or by using the craniomandibular index. Mandibular function was assessed by measuring mouth opening, lateral mandibular movements, mandibular protrusion, presence of TMJ sounds, masticatory efficiency, and muscle activity through electromyography. Due to such great variability, quantitative data synthesis and evaluation in a meta-analysis was not possible.

Only the study by Emshoff, et al.25 fulfilled the four required level I criteria for minimizing systematic bias. Most of the other studies failed to describe in detail the method used to generate and conceal the random allocation of the subjects in the groups (points 8-10), and to show a table with baseline demographic and clinical characteristics of each group (point 15).
Table 2

CONSORT Criteria

<table>
<thead>
<tr>
<th>Section</th>
<th>No.</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title and abstract</td>
<td>1a</td>
<td>Identification as a randomized trial in the title.*</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>Structured summary of trial design, methods, results and conclusions.*</td>
</tr>
<tr>
<td>Background and objectives</td>
<td>2a</td>
<td>Scientific background and explanation of rationale.*</td>
</tr>
<tr>
<td></td>
<td>2b</td>
<td>Specific objectives or hypotheses.*</td>
</tr>
<tr>
<td>Trial design</td>
<td>3a</td>
<td>Description of trial design (such as parallel, factorial), including allocation ratio.</td>
</tr>
<tr>
<td></td>
<td>3b</td>
<td>When applicable, important changes to methods after trial commencement (such as eligibility criteria), with reasons.</td>
</tr>
<tr>
<td>Participants</td>
<td>4a</td>
<td>Eligibility criteria for participants.</td>
</tr>
<tr>
<td></td>
<td>4b</td>
<td>Settings and locations where the data was collected.</td>
</tr>
<tr>
<td>Interventions</td>
<td>5</td>
<td>The interventions for each group with sufficient details to allow replication, including how and when they were actually administered.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>6a</td>
<td>Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed.</td>
</tr>
<tr>
<td></td>
<td>6b</td>
<td>When applicable, any changes to trial outcomes after the trial commenced, with reasons.</td>
</tr>
<tr>
<td>Sample size</td>
<td>7a</td>
<td>How sample size was determined.</td>
</tr>
<tr>
<td></td>
<td>7b</td>
<td>When applicable, explanation of any interim analyses and stopping guidelines.</td>
</tr>
<tr>
<td>Randomization sequence generation</td>
<td>8a</td>
<td>Method used to generate the random allocation sequence.**</td>
</tr>
<tr>
<td>Randomization/type</td>
<td>8b</td>
<td>Type of randomization; details of any restriction (such as blocking and block size).**</td>
</tr>
<tr>
<td>Randomization/ allocation</td>
<td>9</td>
<td>Mechanism used to implement the random allocation sequence allocation (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned.**</td>
</tr>
<tr>
<td>Randomization/ implementation</td>
<td>10</td>
<td>Who generated the random allocation sequence, who enrolled participants to interventions, and who assigned participants to interventions.**</td>
</tr>
<tr>
<td>Blinding</td>
<td>11a</td>
<td>If done, who was blinded after assignment to interventions (for example, participants, care providers, those assessing outcomes) and how.**</td>
</tr>
<tr>
<td></td>
<td>11b</td>
<td>If relevant, description of the similarity of interventions.**</td>
</tr>
<tr>
<td>Statistical methods</td>
<td>12a</td>
<td>Statistical methods used to compare groups for primary and secondary outcomes.</td>
</tr>
<tr>
<td></td>
<td>12b</td>
<td>Methods for additional analyses, such as subgroup analyses and adjusted analyses.</td>
</tr>
<tr>
<td>Outcomes and estimation</td>
<td>17a</td>
<td>For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval).</td>
</tr>
<tr>
<td></td>
<td>17b</td>
<td>For binary outcomes, presentation of both absolute and relative effect sizes is recommended.</td>
</tr>
</tbody>
</table>

(Table 2 cont. on next page)
The overall score of the studies varied from a minimum of six to a maximum of 12. Most of the studies failed to calculate the sample size of each group (point 7), and to define the period of recruitment and follow-up of the subjects (point 14). Interestingly, the quality of the studies tends to improve going from the oldest to the most recent.

As shown in Table 3, LLLT was found to be superior to placebo in improving pain intensity (either spontaneous or elicited by palpation), increasing mouth opening and lateral movements of the mandible, reducing the number of tender points, and decreasing TMJ effusion in eight studies. Conversely, no significant difference between the two groups was reported for pain intensity (either spontaneous or elicited by palpation), mouth opening, lateral movements of the mandible, mandibular protrusion, presence of TMJ sounds, pressure pain threshold over the TMJ, masticatory efficiency, craniomandibular index score, and electromyographic measurements in eight studies. In two studies, LLLT was also found to be superior to microcurrent electric neuromuscular stimulation in improving pain intensity and mouth opening, and to administration of ibuprofen in improving pain intensity, increasing mouth opening and lateral move-
Table 3
Selected RCTs from PubMed Search

<table>
<thead>
<tr>
<th>Author</th>
<th>Site</th>
<th>Subjects</th>
<th>Timing</th>
<th>Duration</th>
<th>Wavelength</th>
<th>Frequency</th>
<th>Output</th>
<th>Measure</th>
<th>Outcome</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bertolucci LE, et al. 1995-117</td>
<td>TMJ</td>
<td>32 (16+16)</td>
<td>3 apps/wk</td>
<td>9 min</td>
<td>904 nm</td>
<td>700 Hz</td>
<td>27 W</td>
<td>PI, MO, LLLT>placebo</td>
<td>LLLT>placebo</td>
<td>8</td>
</tr>
<tr>
<td>Bertolucci LE et al.-1995-218</td>
<td>TMJ</td>
<td>48 (16+16+16)</td>
<td>3 apps/wk</td>
<td>9 min</td>
<td>904 nm</td>
<td>700 Hz</td>
<td>27 W</td>
<td>PI, MO, LLLT>MENS* (PI, MO) LLLT=MENS (LM)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Conti PCR 1997</td>
<td>TMJ, Muscles</td>
<td>20 (5/5+5/5)</td>
<td>1 app/wk</td>
<td>40 sec</td>
<td>830 nm</td>
<td>100 mW</td>
<td>PI, MO, LM, PR</td>
<td>LLLT=placebo</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Kulecioglu S et al. 2003</td>
<td>TMJ, Muscles</td>
<td>35 (20+15)</td>
<td>15 apps</td>
<td>3 min</td>
<td>904 nm</td>
<td>1000 Hz</td>
<td>17 mW</td>
<td>PI, TP, LLLT=MENS (PI, TMJ sounds)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>de Abreu Venancio R et al. 2005</td>
<td>TMJ</td>
<td>30 (15+15)</td>
<td>2 apps/wk</td>
<td>10 sec</td>
<td>780 nm</td>
<td>30 mW</td>
<td>6.3 J/cm²</td>
<td>PI, MO, LM, PR, TMJ PPT</td>
<td>LLLT=placebo</td>
<td>9</td>
</tr>
<tr>
<td>Mazzetto MO et al. 2007</td>
<td>TMJ</td>
<td>48 (24+24)</td>
<td>2 apps/wk</td>
<td>10 sec</td>
<td>780 nm</td>
<td>70 mW</td>
<td>89.7 J/cm²</td>
<td>PI on palpation</td>
<td>LLLT>placebo</td>
<td>8</td>
</tr>
<tr>
<td>Carrasco TG et al. 2008</td>
<td>TMJ</td>
<td>14 (7+7)</td>
<td>2 apps/wk</td>
<td>60 sec</td>
<td>780 nm</td>
<td>70 mW</td>
<td>105 J/cm²</td>
<td>PI on palpation, ME</td>
<td>LLLT>placebo (PI on palpation) LLLT=placebo (ME)</td>
<td>8</td>
</tr>
<tr>
<td>da Cunha LA et al. 2008</td>
<td>TMJ, Muscles</td>
<td>40 (20+20)</td>
<td>1 app/wk</td>
<td>20 sec</td>
<td>830 nm</td>
<td>500 mW</td>
<td>100 J/cm²</td>
<td>PI, CMI</td>
<td>LLLT=placebo</td>
<td>8</td>
</tr>
<tr>
<td>Emshoff R et al. 2008</td>
<td>TMJ</td>
<td>52 (26+26)</td>
<td>2-3 apps/wk</td>
<td>2+2 min</td>
<td>632.8 nm</td>
<td>30 mW</td>
<td>1.5 J/cm²</td>
<td>PI</td>
<td>LLLT=placebo</td>
<td>12</td>
</tr>
<tr>
<td>Carrasco TG et al. 2009</td>
<td>Muscles</td>
<td>60 (10+10+10+10+10)</td>
<td>2 apps/wk</td>
<td>780 nm</td>
<td>50/60/70 mW</td>
<td>25/60/105 J/cm²</td>
<td>PI on palpation</td>
<td>LLLT=placebo</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

(Table cont. next page)
ments of the mandible, and decreasing TMJ effusion.

Considering the studies separately, where LLLT was applied on the TMJs, six out of eight articles reported LLLT to be superior to placebo, except for masticatory efficiency. Considering the studies where LLLT was applied on the masticatory muscles, one out of three articles reported LLLT to be superior to placebo. Considering the studies where LLLT was applied both on the TMJ and the masticatory muscles, one out of three articles reported LLLT to be superior to placebo, but only for increasing mouth opening and lateral movements of the mandible and reducing the number of tender points. Based on these results, LLLT seems to be more effective when applied on the TMJ than when applied on the masticatory muscles. However, the study by Emshoff, et al.,25 which obtained the highest score from both reviewers because of excellent methodological design, and therefore should be the most reliable study, together with the study by De Abreu Venancio, et al.,21 showed a similar effect between LLLT and placebo when applied on the TMJ, contradicting the results of the rest of the studies. Still, it must be noted that in the study by Emshoff, et al.,25 the patients treated with LLLT were all subjects who had already failed to respond to conventional therapy for TMD (self-care including soft diet, cold/hot packs, topical 3% diclofenac gel, occlusal appliance); therefore, they could be more resistant to any type of therapy.

Discussion

Site of Laser Application

The site of application of the laser beam was the first characteristic that differed between the studies. As already mentioned, laser therapy was applied to the TMJ in eight studies,17,18,21-23,25,28,29 to the masticatory muscles in three studies,26,27,30 and to both the TMJ and the masticatory muscles in three studies.19,20,24 Considering the studies separately, where LLLT was applied on the TMJs, six out of eight articles reported LLLT to be superior to placebo, except for masticatory efficiency (Table 3). In the studies where LLLT was applied on the masticatory muscles, one out of three articles reported LLLT to be superior to placebo. In the studies where LLLT was applied both on the TMJ and the masticatory muscles, one out of three articles reported LLLT to be superior to placebo, but only for increasing mouth opening and lateral movements of the mandible and reducing the number of tender points. Based on these results, LLLT seems to be more effective when applied on the TMJ than when applied on the masticatory muscles. However, the study by Emshoff, et al.,25 which obtained the highest score from both reviewers because of excellent methodological design, and therefore should be the most reliable study, together with the study by De Abreu Venancio, et al.,21 showed a similar effect between LLLT and placebo when applied on the TMJ, contradicting the results of the rest of the studies. Still, it must be noted that in the study by Emshoff, et al.,25 the patients treated with LLLT were all subjects who had already failed to respond to conventional therapy for TMD (self-care including soft diet, cold/hot packs, topical 3% diclofenac gel, occlusal appliance); therefore, they could be more resistant to any type of therapy.

Number and Duration of Laser Applications

The number of applications performed differed considerably, ranging from three (one application per week, for
three weeks) to 20 (2-3 applications per week, for eight weeks), and their duration varied from 10 seconds to 10 minutes for each application. Nevertheless, increasing the number of laser applications did not improve LLLT efficacy. In fact, the highest number of laser applications was used by Emshoff, et al.,25 who reported analogous results between LLLT and placebo. Also, increasing the duration of laser applications did not improve LLLT efficacy when the laser is applied on the TMJ or on both the TMJ and the masticatory muscles, but when the laser is applied on the masticatory muscles only, a duration of 360 seconds or more was necessary to achieve positive results.

When combining the number and the duration of laser applications, the results remained similar.

Characteristics of the Laser Beam

The characteristics of the laser beam (i.e., wavelength, frequency, output) were dissimilar among the studies as well, leading to a different dosage of energy applied on the target site. When assessed separately, neither a particular wavelength, nor a frequency, nor an output of the laser beam were associated with a positive effect of LLLT, although frequency was rarely reported. However, these parameters, together with the area of the beam spot, define the dosage density administered to the skin, and such variable, although not always reported, ranged from 1 J/cm² to 105 J/cm². Even in this case, a different density dosage does not seem to affect the efficacy of the treatment. For example, in the study by Carrasco, et al.,26 three different density dosages were used: 25 J/cm², 60 J/cm², and 105 J/cm², but the outcome was the same for all three trials.

Outcome Measures

Outcome measures addressed pain intensity and mandibular function. Pain intensity was assessed using visual analog scales to indicate either spontaneous pain or pain on palpation, number of tender points, or by using the craniomandibular index. Mandibular function was assessed by measuring mouth opening, lateral mandibular movements, mandibular protrusion, presence of TMJ sounds, masticatory efficiency, and muscle activity through electromyography. In most of the studies that evaluated both pain intensity and mandibular function, the results for both variables were similar. One exception is the study by Carrasco, et al.,23 where LLLT was superior to placebo for pain on palpation, but was equal to placebo for masticatory efficiency. This indicates that pain intensity directly affects mandibular function (mouth opening, lateral mandibular movements, mandibular protrusion), but masticatory efficiency can be unrelated to it.

CONSORT 2010 Score

As already mentioned, only one study fulfilled the four required level I criteria for minimizing systematic bias (Emshoff, et al.25). Most of the other studies failed to describe the method used to generate and conceal the random allocation of the subjects in the groups (points 8-10) and to show a table with baseline demographic and clinical characteristics of each group (point 15). Most of the studies, also failed to calculate the sample size of each group (point 7) and to define the period of recruitment and follow-up of the subjects (point 14).

Point 14a of the CONSORT 2010 specifies that the “dates defining the periods of recruitment and follow-up” of the subjects must be clearly indicated in the materials and methods section of the article. None of the studies specified those dates; however, the reviewers agreed on a less strict evaluation, assigning a one score to the study by Emshoff, et al.25 and Shirani, et al.27 because they indicated the duration of the study, specifying in the materials and methods section of their articles both the period over which the subjects were selected and the duration of the trial.

Point 16 of the CONSORT 2010 specifies that it must be indicated in the article whether statistical analysis was performed by originally assigned and randomized groups. This is to avoid bias due to unequal drop-outs. Only the article by Emshoff, et al.25 clearly specified that the analysis was intention-to-treat and involved all randomly assigned patients. However, since the duration of the studies was always short (2-8 weeks), when no drop-outs were specifically reported, the reviewers assumed that statistical analysis was performed by originally assigned groups, assigning a one score to the respective articles.

General Considerations

It must be considered that TMD includes articular and muscular disorders that, even in the presence of some peculiarities, should not significantly differ from other muscular and articular disorders in the rest of the body. Several studies, many of which were also included in a recent review of the literature,33 support the use of LLLT for the treatment of chronic joint and muscle disorders31-33; therefore, it is surprising that the results of the present review did not confirm such outcome. One hypothesis is that, when structural or functional problems are present (for example a displaced disc), the effects of the laser beam cannot sufficiently reduce the symptoms until the main cause is addressed, and this can be a specific feature of the TMJ.

In addition, LLLT is intended as an adjunct treatment for TMD; therefore, more positive results could probably be reached associating such therapy with standard treat-
ment modalities.

For these reasons, researchers are encouraged to fur-
ther look into the potentials of LLLT in order to achieve
more consistent results for the treatment of TMD.

Conclusions

Based on the results of this review, no definitive
conclusions can be drawn on the efficacy of LLLT for
the treatment of TMD. Many methodological dif-
ferences among the studies, especially regarding the number
duration of laser applications and characteristics of
the laser beam (wavelength, frequency, output), do not
allow for standardized guidelines for effective treat-
ment with LLLT.

The only indication seems to be that LLLT is probably
more effective for the treatment of TMJ disorders and
less effective for the treatment of masticatory muscle
disorders.

References

Quintessence, 2008:129-204.

2. Fikackova H, Dostalova T, Navratil L, Klaschka J: Effectiveness of low-level
laser therapy in temporomandibular joint disorders: a placebo controlled

3. de Santana Santos T, Rabello Piva M, Ribeiro MH, Antunes AA, Rocha Melo
A, de Oliveira e Silva ED: Laser therapy efficacy in temporomandibular

pain. A double-blind placebo controlled cross-over study of 40 patients.

5. Basford JR: Low-energy laser therapy of pain and wounds: hype, hope, or

7. Mackler LS, Collender SL: Therapeutic uses of light in rehabilitation. In:
Michlovitz SL, ed. Thermal agents in rehabilitation, 3rd ed. Philadelphia:

8. Andersen HJ, Thoroe U: Low power laser biostimulation of chronofacial
pain. A double-blind placebo controlled cross-over study of 40 patients.

10. Conlan MJ, Raplay JW, Cobb CM: Bistimulation of wound healing by low-

11. Simunovic Z: Low-level laser therapy with trigger points technique: a clinical

medico, ed. Lasers in medicine and dentistry. Basic science and up-to-date

Al-As diode laser irradiation on hyper algiesa in carrageenin-induced

14. Sakurai Y, Yamaguchi M, Akibo Y: Inhibitory effect of low-level laser irri-
tation on LPS-stimulated prostaglandin E2 production and cyclooxyge-

15. Schutz KF, Altman DG, Mohr D, for the CONSORT Group: CONSORT:
2010 Statement: updated guidelines for reporting parallel group random-

16. Fricton JR, Ouyang W, Nixdorf DR, Schifflinn EL, Velly AM, Look JO:
Critical appraisal of methods used in randomized controlled trials of treat-

17. Bertolucci LE, Grey T: Clinical analysis of mid-laser versus placebo treat-
13:26-29.

18. Bertolucci LE, Grey T: Clinical comparative study of microcurrent electrical
stimulation to mid-laser and placebo treatment in degenerative joint disease

19. Conti PC: Low level laser therapy in the treatment of temporomandibular
15:144-149.

laser therapy in temporomandibular disorder. Scand J Rheumatol 2003;
32:114-118.

21. de Abreu Venancio R, Camparis CM, Lissarell Rde F: Low intensity laser
therapy in the treatment of temporomandibular disorders: a double-blind

22. Mazzetto MO, Carrasco TG, Bidinco EF, de Andrade Pizzo RC, Mazzetto
RG: Low intensity laser application in temporomandibular disorders: a

23. Carrasco TG, Mazzetto MO, Mazzetto RG, Mestriner W Jr.: Low intensity
laser therapy in temporomandibular disorder: a phase II double-blind study.

24. da Cunha LA, Firoozmam LM, da Silva AP, Esteves SA, Oliveira V:
Efficacy of low-level laser therapy in the treatment of temporomandibular

25. Ernst F, Bisch R, Pimuel E, Schöning H, Strehl H: Low-level laser ther-
apy for treatment of temporomandibular joint pain: a double-blind and

intensity laser therapy in myofascial pain syndrome. J Craniomandib Pract

27. Shirani AM, Gutcheon N, Taghizadeh M, Mir M: Low-level laser therapy
and myofascial pain dysfunction syndrome: a randomized controlled clini-

28. Marin M, Gatto MR, Bonetti GA: Effects of superfused low-level laser ther-

29. Mazzetto MO, Hotta TH, Pizzo RC: Measurements of jaw movements and
TMJ pain intensity in patients treated with GaAlAs laser. Braz Dent J 2010;

30. Venezian GC, da Silva MA, Mazzetto RG, Mazzetto MO: Low level laser
effects on pain to palpation and electromyographic activity in TMD pa-

level laser therapy in myofascial pain syndrome: an algometric and ther-

32. Rayegani S, Bahrami M, Samadi B, Sedighipour L, Moltkiniad R, Elibaspor
D: Comparison of the effects of low energy laser and ultrasound in treat-
ment of shoulder myofascial pain syndrome: a randomized single-blind

33. Bjordal JM, Coupel C, Chow RT, Tunér J, Ljunggren EA: A systematic
review of low level laser therapy with location-specific doses for pain from